Title: Understanding Limits, Continuity, and Differentiability

. Subtitle: Exploring Fundamental Concepts in Calculus \qquad

Presenter: Prof . Dr. Uday Raj Singh. C.L Jain college (Firozabad) DBRAU

Introduction

. Brief introduction to the fundamental concepts of calculus: limits, continuity, and differentiability.
. Importance of these concepts in understanding the behaviour of functions and solving problems in calculus.

Outline:

1.Introduction to Limits

2.Understanding Continuity
3.Exploring Differentiability
4.Lagrange Mean Value Theorem
5.Rolle's Theorem
6.Conclusion

Definition of Limit

Definition: Let $f(x)$ be a function defined around $x=a$, except possibly at $x=a$. We say that the limit of $f(x)$ as x approaches a is L, denoted by $\lim _{x \rightarrow a} f(x)=L$, if for every $\epsilon>0$, there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
Notation: $\lim _{x \rightarrow \mathrm{a}} f(x)=L$
Examples:

1. Find $\lim \lim _{x \rightarrow 2}(3 x-1)$.
2.Evaluate $\lim _{x \rightarrow 0} x \sin (x)$.

Definition of Continuity

- Definition: A function $f(x)$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$.
- Types of discontinuities: Removable, jump, and infinite discontinuities.
- Examples:

1. Investigate the continuity of $g(x)=x$ at $x=0$.

Definition of Differentiability

A function $f(x)$ is said to be differentiable at a point $x=a$ if the derivative of $f(x)$ exists at $x=a$.
The derivative of $x=a$, denoted as $f^{\prime}(a)$, is defined as:
$f^{\prime}(a)=\lim h \rightarrow 0 \frac{f(a+h)-f(a)}{h}$,exist
. And $\mathrm{L}\left(\mathrm{f}^{1}(\mathrm{a})\right)=\mathrm{R}\left(\mathrm{f}^{1}(\mathrm{a})\right)$
Example -

1. Check the differentiability of $f(x)=|x|$ at $x=0$.

Lagrange Mean Value Theorem (LMVT)

Statement: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ Geometric interpretation.

Examples:

1.Verify LMVT for $f(x)=x^{2}$ on $[1,3]$.
2.Apply LMVT to $g(x)=\ln (x)$ on $[1, e]$.
3.Use LMVT to find a point c for $h(x)=\sin (x)$ on $[0, \pi]$.

Rolle's Theorem

Statement: If $f(x)$ is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$, then there exists c in (a, b) such that $f^{\prime}(c)=0$.
Geometric interpretation.

Examples:

1. Show that $f(x)=x^{3}-3 x^{2}+2 x$ satisfies Rolle's Theorem on $[-1,2]$.
2.Apply Rolle's Theorem to $g(x)=\sin (x)$ on $[0, \pi]$.
2. Investigate the conditions for $h(x)=\cos (x)$ to satisfy Rolle's Theorem

Conclusion

. Summary of the key points covered in the presentation.
. Importance of understanding limits, continuity, and differentiability in calculus.
. Encouragement for further exploration and practice.

THANK YOU

