# Title: Understanding Limits, Continuity, and Differentiability

Subtitle: Exploring Fundamental Concepts in Calculus





Presenter: Prof . Dr. Uday Raj Singh. C.L Jain college (Firozabad) DBRAU

## Introduction

- . Brief introduction to the fundamental concepts of calculus: limits, continuity, and differentiability.
- Importance of these concepts in understanding the behaviour of functions and solving problems in calculus.

# **Outline:**

**1.Introduction to Limits** 2. Understanding Continuity **3.Exploring Differentiability** 4.Lagrange Mean Value Theorem **5.Rolle's Theorem** 6.Conclusion

## **Definition of Limit**

. Definition: Let f(x) be a function defined around x=a, except possibly at x=a. We say that the limit of f(x) as x approaches a is L, denoted by  $\lim_{x\to a} f(x)=L$ , if for every  $\epsilon>0$ , there exists  $\delta>0$  such that if  $0<|x-a|<\delta$ , then  $|f(x)-L|<\epsilon$ .

- . Notation:  $\lim_{x\to a} f(x) = L$
- . Examples:
  - 1.Find  $\lim_{x\to 2} (3x-1)$ . 2.Evaluate  $\lim_{x\to 0} x\sin(x)$ .

#### **Definition of Continuity**

- . Definition: A function f(x) is continuous if  $\lim_{x\to a} f(x) = f(a)$ .
- . Types of discontinuities: Removable, jump, and infinite discontinuities.
- . Examples:
  - 1. Investigate the continuity of g(x)=x at x=0.

## **Definition of Differentiability**

- . A function f(x) is said to be differentiable at a point x=a if the derivative of f(x) exists at x=a.
- . The derivative of x=a, denoted as f'(a), is defined as:
- $f'(a) = \lim h \to 0 \quad \frac{f(a+h) f(a)}{h} , exist$ . And L(f<sup>1</sup>(a)) = R (f<sup>1</sup>(a))
  - Example -1.Check the differentiability of f(x)=|x| at x=0.

#### Lagrange Mean Value Theorem (LMVT)

- . <u>Statement</u>: If f(x) is continuous on[a,b] and differentiable on (a,b), then there exists c in (a,b) such that  $f'(c) = \frac{f(b)-f(a)}{b-a}$
- . Geometric interpretation.
- . Examples:
  - 1.Verify LMVT for *f*(*x*)=*x*<sup>2</sup> on [1,3].
  - 2.Apply LMVT to  $g(x)=\ln(x)$  on [1,e].
  - 3.Use LMVT to find a point *c* for  $h(x)=\sin(x)$  on  $[0,\pi]$ .

#### **Rolle's Theorem**

- . **Statement**: If f(x) is continuous on [a,b], differentiable on (a,b), and f(a)=f(b), then there exists c in (a,b) such that f'(c)=0.
- . Geometric interpretation.

### **Examples:**

•

- 1.Show that  $f(x)=x^3-3x^2+2x$  satisfies Rolle's Theorem on [-1,2].
- 2. Apply Rolle's Theorem to  $g(x) = \sin(x)$  on  $[0,\pi]$ .
- 3. Investigate the conditions for h(x) = cos(x) to satisfy Rolle's Theorem.

# Conclusion

. Summary of the key points covered in the presentation.

. Importance of understanding limits, continuity, and differentiability in calculus.

. Encouragement for further exploration and practice.

# THANK YOU